

Exosphere

State of development

F. Leblanc, J.Y. Chaufray, M. Yagi, R. Modolo

Exospheric description I Thermal component

 Thermal exospheric density from velocity distribution at the collisional - collisionless boundary (from a critical altitude = ~200 km in altitude).

• Density and Temperature of O, CO and CO_2 at 200km from Martian GCM [Chaufray et al. 2014].

Seasonal variation of O density at 300 km

Seasonal variation of CO₂ density at 300 km

Exospheric description II Non-thermal component: DR

•Main source of hot oxygen is O_2^+ dissociative recombination

$$O_2^+ + e^- \rightarrow O^* + O^*$$
 [Chaufray et al., 2007].

• O_2^+ profile from Martian GCM [Chaufray et al. 2014] $CO_2^+ + O \rightarrow CO + O_2^+,$ $CO_2^+ O + \rightarrow CO + O_2^+$

•Collisions between hot O and O background atmosphere (from O and CO_2 derived by GCM) simulated from 120km to ~300km.

 \Rightarrow Products could be all atmospheric species

HELIOSARES

28 February 2014

HELIOSAR

Exospheric description II Non-thermal component: Sputtering

Efficiency of the O sputtering vs E at 2 different incident angle: 55° is the most probable incident angle

HELIOSARES

O⁺ pickup ions reimpact Mars

 \Rightarrow Y from 0 to 10

 \Rightarrow At low energy Y< 1 \Rightarrow Loss rate << Absorption rate

\Rightarrow The energy flux distribution is a key information

28 February 2014

HELIOSARES

The 100-1keV range most important for escape (not for exospheric production)

SW (4 cm⁻³, 400 km/s), 3 nT Parker, Ls=90°-Northern summer, Solar Mean Crustal field at noon

HELIOSARES

Exospheric description II Some illustrations

Dissociative recombination vs Sputtering vs Thermal components

Could we distinguish something?

HELIOSARES

28 February 2014

Ls=90°- Northern summer, Solar Mean

SW (4 cm⁻³, 400 km/s), 3 nT Parker

Crustal field at noon

Dissociative recombination O exospheric products

Ls = 90°- Northern summer, Solar Mean

HELIOSARES

TOTAL: 8.8E+27 s⁻¹

TOTAL: 7.4E+27 eV s⁻¹

HELIOSARES

Ls=90°-Northern summer, Solar Mean SW (4 cm⁻³, 400 km/s), 3 nT Parker, Crustal field at noon HELIOSARES 28 February 2014

O DR + SP + Thermal components

Ls=90°-Northern summer, Solar Mean SW (4 cm⁻³, 400 km/s), 3 nT Parker, Crustal field at noon

HELIOSARES

28 February 2014

Ls=90°- Northern summer, Solar Mean

SW (2.7 cm⁻³, 485 km/s), 3 nT Parker

Crustal field at midnight

Dissociative recombination O exospheric products

Ls = 90°- Northern summer, Solar Mean

HELIOSARES

TOTAL: 1.5E+27 s⁻¹

TOTAL: 2.3E+27 eV s⁻¹

HELIOSARES

Ls=90°-Northern summer, Solar Mean SW (2.7 cm⁻³, 485 km/s), 3 nT Parker, Crustal field at midnight HELIOSARES 28 February 2014

O DR + SP + Thermal components

HELIOSARES

Ls=90°-Northern summer, Solar Mean SW (2.7 cm⁻³, 485 km/s), 3 nT Parker, Crustal field at midnight HELIOSARES 28 February 2014

Ls=90° - Northern summer, Solar Mean

SW (20 cm⁻³, 1000 km/s), 20 nT (By only)

Crustal field at noon

Dissociative recombination O exospheric products

Ls = 90°- Northern summer, Solar Mean

HELIOSARES

 DAYSIDE
 3

 2
 2

 Sputtered O
 1

 exospheric products
 0

NORTH

DUSK

TOTAL: 8.4E+26 s⁻¹

TOTAL: 3.2E+28 eV s⁻¹

DAYSIDE

2

01

Ls=90°, Northern summer, Solar Mean SW (20 cm⁻³, 1000 km/s), 20 nT (By only) Crustal field at noon

HELIOSARES

log_{ie} cm⁻¹

5

28 February 2014

O DR + SP + Thermal components

Ls=90°, Northern summer, Solar Mean SW (20 cm⁻³, 1000 km/s), 20 nT (By only) Crustal field at noon

HELIOSARES

28 February 2014

Exospheric description IV Conclusion

Towards a 3D Multi-species model

- 3D model of RD and sputtering coupled with GCM and hybrid models DONE

- Model of molecular dynamic model simulating collisions between CO_2/CO_2 , $CO_2/O-C$, CO_2/CO , CO/O-C, CO/CO and O/O-C DONE

- Parallellisation DONE
- Validation

ON-GOING

- Library of exospheric simulations IN PROGRESS HELIOSARES 28 February 2014