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Outline

= Validation of the temperature/density predicted in
the upper atmosphere

SPICAM temp/dens profiles

MO thermospheric polar warming
MGS ER density

MGS POD temperature
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Lower/upper atmosphere coupling

= Waves propagating from below strongly affect
temperatures in the upper atmosphere

05/10/09 3



Validation (I): SPICAM profiles

= SPICAM obtains atmospheric density profiles (60-
130 km) by stellar occultation (Forget et al., 2009)

= Temperature profiles can be obtained
= ~660 profiles (1* Martian year)
= Mostly nighttime profiles
= Effects of dust felt in the thermosphere

= Temperatures below CO, condensation found
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Comparisons of density and temperature profiles
(Forget et al., 2009

Ls =240°-270° latitude = 35N-50N

—— SPICAM (14 profiles)
—— Model (low dust, solar min EUV)
—— Model (dusty, solar max EUV)

Model (TES dust, solar mean)

SPICAM

o Model

200 220

_ » GCM overestimates p and T  underestimates z

— meso, meso

= Problems in the IR radiative transter ? =
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= MO aerobraking: p, T, =120 km, perihelion

= Increase of T towards the winter pole observed

T, 120 km, Ls=270-300
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= GCM overestimates T(120 km) but reproduces
intensity and distribution of TPW
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= Electron Reflectrometry on MGS

allows to infer p . (Lillis et al., 2005,
2008)

= Only where important crustal
magnetic field

= LMD-MGCM does generally a
g00d job, but:

= Problems with latitudinal variation

= LMD-MGCM tends to
overestimate p .. at mid-high lat.
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= Exospheric temperature measured using POD with
MGS (Forbes et al., 2008)

= 4 MY of observations, seasonal and solar cycle variability
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Solid lines: GCM T; lat=-45, LT=15, , lon.
average, exobase
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Dashed lines: exospheric T from MGS
POD, 1at=40S-60S, LT=14, lon. average

= Solar cycle variation well
represented by GCM
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= Seasonal variation
stronger than observed
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Outline

= Validation of the temperature/density predicted in
the upper atmosphere

= SPICAM temp/dens profiles

= MO thermospheric polar warming
= MGS ER density

= MGS POD temperature

= Chemical module

= NO nightglow

7 * Tonospheric modeling and results
\\\_;\ —— _//’——
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Photochemical model: numerical scheme

Continuity equation: onr /0t=P -ln.

Discretization using implicit scheme

Timestep At< T
= Serious constrain to computation efficiency
Photochemical equilibrium used for fastest species
= n=P/l
s TKAT

= Good accuracy, important CPU time saving
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Photochemical model

= 12 species:
. CO,,CO, 0(P),0('D),0,,0,,H,OH, HO ,H , HO,HO,
« PE for O('D), OH, HO,_ and O,

= 27 reactions, including 9 photodissociations

= Reaction rates from JPL compilation

= Photodissociation coefficients calculated
= Later extension: Nitrogen chemistry

« 5 new species: N, N(°D), NO, NO_, N,

= 17 new reactions (3 photodissociations) -
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Photochemical model: implementation
in the LMD-MGCM

= Development and testing using 1-D model
= Collaboration with IAA (Granada, Spain)

= Included in the thermospheric module of LMD-
MGCM (Angelats 1 Coll et al., 2005; Gonzalez-Galindo et al., 2005)

» Another chemical scheme is used for the lower
atmosphere

= More sophisticated chemistry needed there

= Similar results obtained in the transition region
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= N+ O = NO*

= N and O atoms formed 1n the dayside thermosphere,
transported to nightside

= (Good tracer of circulation
= Observed by SPICAM (60
orbits)

= Sampling far from complete

= Strong variability observed
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= N+ O = NO*

= N and O atoms formed 1n the dayside thermosphere,
transported to nightside

= (Good tracer of circulation
= Observed by SPICAM (60
orbits)

= Sampling far from complete {8

= Strong variability observed
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Photochemistry: NO nightglow
= | Mars Year simulation with the LMD-MGCM

= Nightglow traced by N and O recombinations

0.0 0.4 0.6 0.8

— = Higher intensity at poles during autumn/winter

= Strong longitudinal variability predicted




= Peak to peak comparison

Orb. 7186, Is=72.4, lai=-59, LT=22.1 Orb. 716, Is=72.4, lat=-34, LT=20.5 Orb. 1585, [s=191, lat=14, LT=0.5
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Comparison of tendencies: Int vs Lat, Ls=0-90
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Ls=0-30
Ls=30-60
Ls=60-90

Comparison tendencies:
Int vs Lat, Ls=0-90

Intensity (kR)

Intensity (kR)

Ls=0-30 Ls=0-30
Ls=30-60 | Ls=30-60
Ls=60-90 Ls=60-90

Intensity (kR)
Intensity (kR)




Outline

= Validation of the temperature/density predicted in
the upper atmosphere

= SPICAM temp/dens profiles

= MO thermospheric polar warming
= MGS ER density

= MGS POD temperature

= Chemical module
= NO nightglow

~— = Jonospheric modeling and results
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Ionosphere

= Why studying the Martian 1onosphere with a GCM?

= Mars 1onosphere sounded by different instruments

= Valuable information can be gained about background
neutral atmosphere

= Coupling with the solar wind, escape,...
= But LMD-MGCM only included neutral chemistry

= Extended chemical module (1ons) developed;
collaboration IAA (Granada, Spain)/LMD (Paris, France)
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Ionosphere in the LMD-MGCM:
what is in

= 9 new 10nospheric species (+ electrons)
= 02+, O+, CO2+, CO+, N+, NO+, N2+, H+, C+
= Plasma globally neutral

= Photochemical equilibrium for most 1ons
= 37 new 10nospheric reactions

= Rates from JPL compilation

= 11 photoionizations, rates calculated by the model
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Ionosphere in the LMD-MGCM:
what is NOT in

= Advection of 10ns/electrons by general circulation
= Work 1n progress, to be finished soon
= Secondary photoionizations by photoelectrons

= Important for the secondary 1onization peak

= Parameterization by Simon & Witasse, to be included
= Plasma transport

= Limits the validity to the photochemical region

(<180km)

—
= Effects of magnetic fields _—
R
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Ionosphere in the LMD-MGCM:
results

Electron concentration, LL.s=240-270, equator

02+, Ls=240-270, Lat=0

0
0 2 4 6 8 10 12 14 16 18 20 a 2 4 6 5 M0 12 14 16 18 20 22 24
LT LT

= Electron peak at ~135 km, ~2e5 electrons/cm3

= O2+ dominates 1onosphere

= In agreement with observations
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Ionosphere in the LMD-MGCM:
results

Altitude (k)

= Weak nighttime
1onosphere predicted
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= lifetime
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Ionosphere in the LMD-MGCM

results

electron peak variation

1 Martian year simulation,
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= Maximum electronic concentration in perihelion

= Peak altitude varies between 125 and 140 km
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= Qualitative agreement with observations



Summary

= Temperature/density predicted by the model
validated against data

= Temperature overestimated in the mesopause/lower
thermosphere

= Chemical module included in the LMD-MGCM
= Good agreement with NO nightglow observations
= Jonospheric now included

= First comparisons show good qualitative agreement with
— observation

NQ_L = /
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